4. FONCTIONS DE DISTRIBUTIONS




COURS DE STATISTIQUES


1. Echantillons
2. Moyennes
2.1. Moyenne arithmétique
2.2. Médiane
2.3. Moyenne quadratique
2.4. Moyenne harmonique
2.5. Moyenne géométrique
2.6. Moyenne mobile/glissante
2.7. Moyenne pondérée
2.8. Moyenne fonctionnelle
2.9 Propriétés des moyennes
3. Types de variables
3.1. Variables discrètes
3.1.2. Espérance discrète
3.1.3. Variance discrète
3.1.4. Variable centrée réduite
3.1.5. Covariance discrète
3.1.6. Coefficient de corrélation
3.2. Variables continues
3.2.1. Densité de probabilité
3.2.2. Espérance continue
3.2.3. Variance continue
4. Fonctions de distributions
4.1. Fonction discrète uniforme
4.2. Fonction de Bernoulli
4.3. Fonction Géométrique
4.4. Fonction Binomiale
4.5. Fonction hypergéométrique
4.6. Fonction multinomiale
4.7. Fonction de Poisson
4.8. Fonction de Gauss-Laplace/Loi Normale
4.8.1. Somme de deux variables aléatoires normales
4.8.2. Produit de deux variables aléatoires normales
4.8.3. Loi Normale Centré Réduite
4.8.4. Droite de Henry
4.9. Fonction Log-Normale
4.10. Fonction uniforme continue
4.11. Fonction triangulaire
4.12. Fonction de Pareto
4.13. Fonction exponentielle
4.14. Fonction de Cauchy
4.15. Fonction bêta
4.16. Fonction gamma
4.17. Fonction de khi-deux
4.18. Fonction de Student
4.19. Fonction de Fisher-Snedecor
4.20. Fonction de Benford
5. Estimateurs de vraisemblance
5.1. Estimateurs de la loi Normale
5.2. Estimateur de la loi de Poisson
5.3. Estimateur de la loi de Binomiale
5.4. Estimateurs de la loi de Weibull
6. Intervalles de confiance
6.1.1. I.C. sur la moyenne avec avec variance théorique connue
6.2.2. I.C. sur la variance avec avec moyenne théorique connue
6.3.3. I.C. sur la variance avec avec moyenne empirique connue
6.4.4. I.C. sur la moyenne avec avec moyenne empirique connue
7. Loi faible des grands nombres
7.1.1. Inégalité de Markov
7.2.2. Inégalité de Bienaymé-Tchebychev
8. Fonction caractéristique
9. Théorème central limite
10. Tests d'adéquations (tests d'hypothèses)
10.1. Analyse de la variance (ANOVA à un facteur)
10.2. Test d'ajustement du khi-deux
11. Calculs d'erreurs
11.1. Incertitudes relatives et absolues
11.2. Erreurs statistiques
11.3. Propagation des erreurs
11.4. Chiffres significatifs

Lorsque nous observons des phénomènes probabilistes, et que nous prenons note des valeurs prises par ces derniers et que nous les reportons graphiquement, nous observons toujours que les différentes mesures obtenues suivent une caractéristique courbe ou droite typique fréquemment reproductible.

Dans le domaine des probabilités et statistiques, nous appelons ces caractéristiques des "fonctions de distribution" car elles indiquent la fréquence avec laquelle la variable aléatoire apparaît avec certaines valeurs.

Remarque: Nous utilisons aussi simplement le terme "fonction" ou encore "loi" pour désigner ces caractéristiques.

Ces fonctions sont en pratique bornées par ce que nous appelons "l'étendue de la distribution", ou "dispersion de la distribution", qui correspond à la différence entre la donnée maximale (à droite) et la donnée minimale (à gauche) des valeurs observées :

equation   (7.159)

Si les valeurs observées se distribuent d'une certaine manière c'est qu'elles ont alors une probabilité d'avoir une certaine valeur de la fonction de distribution.

Dans la pratique industrielle (cf. chapitre de Génie Industriel), la dispersions de valeurs statistiques est important parce qu'elle donne une indication sur la vairation d'un processus (variablité).

Définitions:

D1. La relation mathématique qui donne la probabilité qu'a une variable aléatoire d'avoir une valeur donnée de la fonction de distribution est appelée "fonction de densité", "fonction de masse" ou encore "fonction marginale".

D2. La relation mathématique qui donne la probabilité cumulée qu'a une variable aléatoire d'être inférieure ou égale à une certaine valeur est nommée la "fonction de répartition" ou "fonction cumulée".

D3. Des variables aléatoires sont dites "indépendantes et identiquement distribuées" (i.i.d.) si elles suivent toutes la même fonction de distribution et qu'elles sont indépendantes...

Remarque: Le lecteur pourra trouver la fonction de distribution de Weibull (ou "loi de Weibull") dans le chapitre traitant du Génie Industriel (section sur l'Ingénierie).

De telles fonctions étant très nombreuses dans la nature, nous proposons au lecteur une étude détaillée des plus connues seulement.

4.1. FONCTION DISCRÈTE UNIFORME

Si nous admettons qu'il est possible d'associer une probabilité à un événement, nous pouvons concevoir des situations où nous pouvons supposer a priori que tous les événements élémentaires sont équiprobables (c'est-à-dire qu'ils ont même probabilité). Nous utilisons alors le rapport entre le nombre de cas favorables et le nombre de cas possibles pour calculer la probabilité de tous les événements de l'Univers des événements U. Plus généralement si U est un ensemble fini d'événements équiprobables et A une partie de U nous avons sous forme ensembliste :

equation   (7.160)

Plus communément, soit e un événement pouvant avoir N issues équiprobables possibles. Alors la probabilité d'observer l'issue donnée de l'événement suit une "fonction discrète uniforme" (ou "loi discrète uniforme") donnée par la relation :

equation   (7.161)

Ayant pour espérance (ou moyenne) :

equation   (7.162)

Si nous nous mettons dans le cas particulier où equation avec equation. Nous avons alors (cf. chapitre de Suites et Séries):

equation   (7.163)

Et pour variance:

 equation   (7.164)

exempleExemple:

Tracé de la fonction de distribution et respectivement de répartition pour la loi discrète uniforme de paramètres {1,5,8,11,12} (nous voyons que chaque valeur a bien une probabilité équiprobable) :

equationequation
  (7.165)


page suivante : 4.2. Fonction de Bernoulli