1. LA CRISE DES FONDEMENTS



THÉORIE DE LA DÉMONSTRATION

1. Crise des fondements

1.1.Paradoxes

2. Raisonnement hypothético-déductif

3. Calcul propositionnel

3.1. Propositions

3.2. Connecteurs

3.3. Procédures de décision

3.3.1. Procédures de décision non axiomatisées

3.3.2. Procédures de décision axiomatisées

3.4. Quantificateurs

4. Calcul des prédicats

4.1. Grammaire

4.2. Langages

4.2.1. Symboles

4.2.2. Termes

4.2.3. Formules

5. Démonstrations

5.1. Règles de démonstration

Pour les premiers Grecs, la géométrie était considérée comme la forme la plus haute du savoir, une puissante clé pour les mystères métaphysiques de l'Univers. Elle était plutôt une croyance mystique, et le lien entre le mysticisme et la religion était rendu explicite dans des cultes comme ceux des Pythagoriciens. Aucune culture n'a depuis déifié un homme pour avoir découvert un théorème géométrique! Plus tard, les mathématiques furent considérées comme le modèle d'une connaissance a priori dans la tradition aristotélicienne du rationalisme.

L'étonnement des Grecs pour les mathématiques ne nous a pas quitté, on le retrouve sous la traditionnelle métaphore des mathématiques comme "Reine des Science". Il s'est renforcé avec les succès spectaculaires des modèles mathématiques dans la science, succès que les Grecs (ignorant même la simple algèbre) n'avaient pas prévus. Depuis la découverte par Isaac Newton du calcul intégral et de la loi du carré inverse de la gravité, à la fin des années 1600, les sciences phénoménales et les plus hautes mathématiques étaient restées en étroite symbiose - au point qu'un formalisme mathématique prédictif était devenu le signe distinctif d'une "science dure".

Après Newton, pendant les deux siècles qui suivirent, la science aspira à ce genre de rigueur et de pureté qui semblaient inhérentes aux mathématiques. La question métaphysique semblait simple: les mathématiques possédaient une connaissance a priori parfaite, et parmi les sciences, celles qui étaient capables de se mathématiser le plus parfaitement étaient les plus efficaces pour la prédiction des phénomènes. La connaissance parfaite consistait donc dans un formalisme mathématique qui, une fois atteint par la science et embrassant tous les aspects de la réalité, pouvait fonder une connaissance empirique a postériori sur une logique rationnelle a priori. Ce fut dans cet esprit que Jean-Antoine Nicolas de Cartitat, marquis de Condorcet (philosophe et mathématicien français), entreprit d'imaginer la description de l'Univers entier comme un ensemble d'équation différentielles partielles se résolvant les unes après les autres.

La première faille dans cette image inspiratrice apparut dans la seconde moitié du 19ème siècle, quand Riemann et Lobachevsky prouvèrent séparément que l'axiome des parallèles d'Euclides pouvait être remplacé par d'autres qui produisaient des géométries "consistantes" (nous reviendrons sur ce terme plus loin). La géométrie de Riemann prenait modèle sur une sphère, celle de Lobachevsky, sur la rotation d'un hyperboloïde.

L'impact de cette découverte a été obscurci plus tard par de grands chamboulements, mais sur le moment, il fut un coup de tonnerre dans le monde intellectuel. L'existence de systèmes axiomatiques mutuellement inconsistants, et dont chacun pouvait servir de modèle à l'Univers phénoménal, remettait entièrement en question la relation entre les mathématiques et la théorie physique.

Quand on ne connaissait qu'Euclide, il n'y avait qu'une géométrie possible. On pouvait croire que les axiomes d'Euclide constituaient un genre de connaissance parfaite a priori sur la géométrie dans le monde phénoménal. Mais soudain, nous avons eu trois géométries, embarrassantes pour les subtilités métaphysiques.

Pourquoi aurions-nous à choisir entre les axiomes de la géométrie plane, sphérique et hyperbolique comme descriptions de la géométrie du réel? Parce que toutes les trois sont consistantes, nous ne pouvons en choisir aucune comme fondement a priori - le choix doit devenir empirique, basé sur leur pouvoir prédictif dans une situation donnée.

Bien sûr, Les théoriciens de la physique ont longtemps été habitués à choisir des formalismes pour poser un problème scientifique. Mais il était admis largement, si ce n'est inconsciemment, que la nécessité de procéder ainsi était fonction de l'ignorance humaine, et qu'avec de la logique ou des mathématiques assez bonnes, on pouvait déduire le bon choix à partir de premiers principes, et produire des descriptions à priori de la réalité, qui devaient être confirmées après coup par une vérification empirique.

Cependant, la géométrie euclidienne, considérée pendant plusieurs centaines d'années comme le modèle de la perfection axiomatique des mathématiques, avait été détrônée. Si l'on ne pouvait connaître a priori quelque chose d'aussi fondamental que la géométrie dans l'espace, quel espoir restait-il pour une pure théorie rationnelle qui embrasserait la totalité de la nature ? Psychologiquement, Riemann et Lobachevsky avaient frappé au coeur de l'entreprise mathématique telle qu'elle avait été conçue jusqu'alors.

De plus, Riemann et Lobachevsky remettaient la nature de l'intuition mathématique en question. Il avait été facile de croire implicitement que l'intuition mathématique était une forme de perception - une façon d'entrevoir le monde platonicien derrière la réalité. Mais avec deux autres géométries qui bousculaient celle d'Euclide, personne ne pouvait plus être sûr de savoir à quoi le monde ressemblait.

Les mathématiciens répondirent à ce double problème avec un excès de rigueur, en essayant d'appliquer la méthode axiomatique à toutes les mathématiques. Dans la période pré-axiomatique, les preuves reposaient souvent sur des intuitions communément admises de la "réalité" mathématique, qui ne pouvaient plus être considérées automatiquement comme valides.

La nouvelle façon de penser les mathématiques conduisait à une série de succès spectaculaires. Pourtant cela avait aussi un prix. La méthode axiomatique rendait la connexion entre les mathématiques et la réalité phénoménale toujours plus étroite. En même temps, des découvertes suggéraient que les axiomes mathématiques qui semblaient être consistants avec l'expérience phénoménale pouvait entraîner de vertigineuses contradictions avec cette expérience.

La majorité des mathématiciens devinrent rapidement des "formalistes", soutenant que les mathématiques pures ne pouvaient qu'être considérées philosophiquement comme une sorte de jeu élaboré qui se jouait avec des signes sur le papier (c'est la théorie qui sous-tend la prophétique qualification des mathématiques de "système à contenu nul" par Robert Heinlein). La croyance "platonicienne" en la réalité des objets mathématiques, à l'ancienne manière, semblait bonne pour la poubelle, malgré le fait que les mathématiciens continuaient à se sentir comme les platoniciens durant le processus de découverte des mathématiques.

Philosophiquement, donc, la méthode axiomatique conduisait la plupart des mathématiciens à abandonner les croyances antérieures en la spécificité métaphysique des mathématiques. Elle produisit aussi la rupture contemporaine entre les mathématiques pures et appliquées. La plupart des grands mathématiciens du début de la période moderne - Newton, Leibniz, Fourier, Gauss et les autres - s'occupaient aussi de science phénoménale. La méthode axiomatique avait couvé l'idée moderne du mathématicien pur comme un super esthète, insoucieux de la physique. Ironiquement, le formalisme donnait aux purs mathématiciens un mauvais penchant à l'attitude platonicienne. Les chercheurs en mathématiques appliquées cessèrent de côtoyer les physiciens et apprirent à se mettre à leur traîne.

Ceci nous emmène au début du 20ème siècle. Pour la minorité assiégée des platoniciens, le pire était encore à venir. Cantor, Frege, Russell et Whitehead montrèrent que toutes les mathématiques pures pouvaient être construites sur le simple fondement axiomatique de la théorie des ensembles. Cela convenait parfaitement aux formalistes: les mathématiques se réunifiaient, du moins en principe, à partir d'un faisceau de petits jeux détachés d'un grand. Les platoniciens aussi étaient satisfaisaits, sil en survenait une grande structure, clé de voûte consistante pour toutes les mathématiques, la spécificité métaphysique des mathématiques pouvait encore être sauvée.

D'une façon négative, pourtant, un platonicien eut le dernier mot. Kurt Gödel mit son grain de sable dans le programme formaliste d'axiomatisation quand il démontra que tout système d'axiomes assez puissant pour inclure les entiers devait être soit inconsistant (contenir des contradictions) soit incomplet (trop faible pour décider de la justesse ou de la fausseté de certaines affirmations du système). Et c'est plus ou moins où en sont les choses aujourd'hui. Les mathématiciens savent que de nombreuses tentatives pour faire avancer les mathématiques comme une connaissance a priori de l'Univers doivent se heurter à de nombreux paradoxes et à l'impossibilité de décider quel système axiomatique décrit les mathématiques réelles. Ils ont été réduits à espérer que les axiomatisations standard ne soient pas inconsistantes mais incomplètes, et à se demander anxieusement quelles contradictions ou quels théorèmes indémontrables attendent d'être découverts ailleurs.

Cependant, sur le front de l'empirisme, les mathématiques étaient toujours un succès spectaculaire en tant qu'outil de construction théorique. Les grands succès de la physique du 20ème siècle (la relativité générale et la physique quantique) poussaient si loin hors du royaume de l'intuition physique, qu'ils ne pouvaient être compris qu'en méditant profondément sur leurs formalismes mathématiques, et en prolongeant leurs conclusions logiques, même lorsque ces conclusions semblaient sauvagement bizarres. Quelle ironie! Au moment même où la perception mathématique en venait à paraître toujours moins fiable dans les mathématiques pures, elle devenait toujours plus indispensable dans les sciences phénoménales.

À l'opposé de cet arrière-plan, l'applicabilité des mathématiques à la science phénoménale pose un problème plus épineux qu'il n'apparaît d'abord. Le rapport entre les modèles mathématiques et la prédiction des phénomènes est complexe, pas seulement dans la pratique mais dans le principe. D'autant plus complexe que, comme nous le savons maintenant, il y a des façons d'axiomatiser les mathématiques qui s'excluent!

Mais pourquoi existe-t-il seulement de bons choix de modèle mathématique ? C'est à dire, pourquoi y a-t-il un formalisme mathématique, par exemple pour la physique quantique, si productif qu'il prédit réellement la découverte de nouvelles particules observables ?

Pour répondre à cette question nous observerons qu'elle peut, aussi bien, fonctionner comme une sorte de définition. Pour beaucoup de système phénoménaux, de tels formalismes prédictifs exacts n'ont pas été trouvés, et aucun ne semble plausible. Les poètes aiment marmonner sur le coeur des hommes, mais on peut trouver des exemples plus ordinaires : le climat, où le comportement d'une économie supérieure à celle d'un village, par exemple - systèmes si chaotiquement interdépendants que la prédiction exacte est effectivement impossible (pas seulement dans les faits mais en principe).

1.1. PARADOXES

Dès l'antiquité, certains logiciens avaient constaté la présence de nombreux paradoxes au sein de la rationalité. En fait, nous pouvons dire que malgré leur nombre, ces paradoxes ne sont que les illustrations d'un petit nombre de structures paradoxales. Attardons nous à exposer à titre de culture générale les plus connus.

exempleExemples:

E1. Le paradoxe de la classe des classes (Russell)

Il existe deux types de classes : celles qui se contiennent elles-mêmes (ou classes réflexives : la classe des ensembles non-vides, la classe des classes,...) et celles qui ne se contiennent pas elles-mêmes (ou classes irréflexives : la classe des travaux à rendre, la classe des oranges sanguines, ...). La question posée est la suivante : la classe des classes irréflexives est-elle elle même réflexive ou irréflexive? Si elle est réflexive, elle se contient et se trouve rangée dans la classe des classes irréflexives qu'elle constitue, ce qui est contradictoire. Si elle est irréflexive, elle doit figurer dans la classe des classes irréflexives qu'elle constitue et devient ipso facto réflexive, nous sommes face à une nouvelle contradiction.

E2. Le paradoxe du bibliothécaire (Gonseth)

Dans une bibliothèque, il existe deux types de catalogues. Ceux qui se mentionnent eux-mêmes et ceux qui ne se mentionnent pas. Un bibliothécaire doit dresser le catalogue de tous les catalogues qui ne se mentionnent pas eux-mêmes. Arrivé au terme de son travail, notre bibliothécaire se demande s'il convient ou non de mentionner le catalogue qu'il est précisément en train de rédiger. A ce moment, il est frappé de perplexité. Si ne le mentionne pas, ce catalogue sera un catalogue qui ne se mentionne pas et qui devra dès lors figurer dans la liste des catalogues ne se mentionnant pas eux-mêmes. D'un autre côté, s'il le mentionne, ce catalogue deviendra un catalogue qui se mentionne et qui ne doit donc pas figurer dans ce catalogue, puisque celui-ci est le catalogue des catalogues qui ne se mentionnent pas.

E3. Le paradoxe du menteur (variante)

Définissons provisoirement le mensonge comme l'action de formuler une proposition fausse. Le poète crétois Epiménide affirme : "Tous les Crétois sont des menteurs", soit la proposition P. Comment décider de la valeur de vérité de P ? Si P est vraie, comme Epiménide est Crétois, P doit être fausse. Il faut donc que P soit fausse pour pouvoir être vraie, ce qui est contradictoire. P est donc fausse. Remarquons qu'on ne peut pas en déduire, comme dans le véritable paradoxe du menteur, que P doit aussi être vraie.


page suivante : 2. Raisonnement hypothético-déductif