THÉORIE DE LA DÉMONSTRATION
1.1.Paradoxes
2. Raisonnement hypothético-déductif
3.1. Propositions
3.2. Connecteurs
3.3. Procédures de décision
3.3.1. Procédures de décision non axiomatisées
3.3.2. Procédures de décision axiomatisées
3.4. Quantificateurs
4.1. Grammaire
4.2. Langages
4.2.1. Symboles
4.2.2. Termes
4.2.3. Formules
5.1. Règles de démonstration
La théorie de la démonstration et du calcul propositionnel (logique) a trois objectifs dans le cadre de ce site :
1. Apprendre au lecteur comment raisonner et à démontrer et cela indépendamment de la spécialisation étudiée
2. Montrer que le processus d'une démonstration est indépendante du langage utilisé
3. Se préparer à la théorie de la logique et au théorème d'incomplétude de Gödel ainsi qu'aux automates (cf. chapitre d'Informatique Théorique).
Le théorème de Gödel est le point le plus passionnant car si nous définissons une religion comme un système de pensée qui contient des affirmations indémontrables, alors elle contient des éléments de foi, et Gödel nous enseigne que les mathématiques sont non seulement une religion, mais que c'est alors la seule religion capable de prouver qu'elle en est une!
R1. Il est (très) fortement conseillé de lire en parallèle à ce chapitre, ceux sur la théorie des automates et de l'algèbre de Boole disponibles dans la section d'Informatique Théorique du site.
R2. Il faut prendre cette théorie comme une curiosité sympathique mais qui n'amène fondalement pas grand chose excepté des méthodes de travail/raisonnement. Par ailleurs, son objectif n'est pas de démontrer que tout est démontrable mais que toute démonstration peut se faire sur un langage commun à partir d'un certain nombre de règles.
Souvent, quand un étudiant arrive dans une classe supérieure, il a surtout appris à calculer, à utiliser des algorithmes mais relativement peu voir pas du tout à raisonner. Pour tous les raisonnements, le support visuel est un outil puissant, et les personnes qui ne voient pas qu'en traçant telle ou telle courbe droite la solution apparaît ou qui ne voient pas dans l'espace sont très pénalisées.
Lors des études secondaires, nous manipulons déjà des objets inconnus, mais c'est surtout pour faire des calculs, et quand nous raisonnons sur des objets représentés par des lettres, nous pouvons remplacer ceux-ci visuellement par un nombre réel, un vecteur, etc. A partir d'un certain niveau, nous demandons aux personnes de raisonner sur des structures plus abstraites, et donc de travailler sur des objets inconnus qui sont des éléments d'un ensemble lui-même inconnu, par exemple les éléments d'un groupe quelconque (cf. chapitre de Théorie Des Ensembles). Ce support visuel n'existe alors plus.
Nous demandons ainsi souvent aux étudiants de raisonner, de démontrer des propriétés, mais personne ne leur a jamais appris à raisonner convenablement, à écrire des preuves. Si nous demandons à un étudiant de licence ce qu'est une démonstration, il a très probablement quelque difficulté à répondre. Il peut dire que c'est un texte dans lequel on trouve des "mots clés": "donc", "parce que", "si", "si et seulement si", "prenons un x tel que", "supposons que", "cherchons une contradiction", etc. Mais il est incapable de donner la grammaire de ces textes ni même ces rudiments, et d'ailleurs, ses enseignants, s'ils n'ont pas suivi de cours, en seraient probablement incapables aussi.
Pour comprendre cette situation, rappelons que pour parler un enfant n'a pas besoin de connaître la grammaire. Il imite son entourage et cela marche très bien : un enfant de six ans sait utiliser des phrases déjà compliquées quant à la structure grammaticale sans avoir jamais fait de grammaire. La plupart des enseignants ne connaissent pas non plus la grammaire du raisonnement mais, chez eux, le processus d'imitation a bien marché et ils raisonnent correctement. L'expérience de la majorité des enseignants d'université montre que ce processus d'imitation marche bien chez les très bons étudiants, et alors il est suffisant, mais il marche beaucoup moins bien, voire pas du tout, chez beaucoup d'autres.
Tant que le degré de complexité est faible (notamment lors d'un raisonnement de type "équationnel"), la grammaire ne sert à rien, mais quand il augmente ou quand on ne comprend pas pourquoi quelque chose est faux, il devient nécessaire de faire un peu de grammaire pour pouvoir progresser. Les enseignants et les étudiants connaissent bien la situation suivante: dans un devoir, le correcteur a barré toute une page d'un grand trait rouge et mis "faux" dans la marge. Quand l'étudiant demande ce qui est faux, le correcteur ne peut que dire des choses du genre "ça n'a aucun rapport avec la démonstration demandée", "rien n'est juste", ..., ce qui n'aide évidemment pas l'étudiant à comprendre. Cela vient en partie, du fait que le texte rédigé par l'étudiant utilise les mots voulus mais dans un ordre plus ou moins aléatoire et qu'on ne peut donner de sens à l'assemblage de ces mots. De plus, l'enseignant n'a pas les outils nécessaires pour pouvoir expliquer ce qui ne va pas. Il faut donc les lui donner!
Ces outils existent mais sont assez récents. La théorie de la démonstration est une branche de la logique mathématique dont l'origine est la crise des fondements : il y a eu un doute sur ce que nous avions le "droit" de faire dans un raisonnement mathématique (voir la "crise des fondements" plus loin). Des paradoxes sont apparus, et il a alors été nécessaire de préciser les règles de démonstration et de vérifier que ces règles ne sont pas contradictoires. Cette théorie est apparue au début du 20ème siècle, ce qui est très peu puisque l'essentiel des mathématiques enseignées en première moitié de l'université est connu depuis le 16ème-17ème siècle.
page suivante : 1. Crise des fondements