AXIOMES DE HILBERT



COURS DE GÉOMÉTRIE EUCLIDIENNE

1. Objets de la géométrie euclidienne

1.1. Dimensions

2. Constructions d'Euclide

2.1. Postulats d'Euclide

2.2. Droites et Segments

2.2.1. Grandeurs de même espèces

2.3. Plan

2.3.1. Déplacements et retournements

2.4. Angles

2.4.1. Mesure des angles

2.4.2. Unités de mesure des angles

2.4.3. Bissectrice

2.5. Triangles

2.5.1. Triangles égaux

2.5.2. Triangles isocèles

2.5.3. Triangles équilatéraux

2.5.4. Triangles rectangles

2.5.5. Triangles rectangles-isocèles

2.5.6. Inégalités dans les triangles

2.5.7. Théorème de Pythagore

2.5.8. Théorème de Thalès

2.6. Parallèlisme

2.7. Cercles

3. Axiomes de Hilbert

3.1. Axiomes d'associations

3.2. Axiomes d'ordre

3.3. Axiomes de congruence

3.4. Axiomes de continuité

3.5. Axiome des parallèles

4. Barycentre

5. Transformations

5.1. Translation

5.2. Homothétie

5.3. Rotation

5.4. Réflexion

Euclide a rassemblé toutes les connaissances géométriques de son temps sous la forme des ses cinq postulats. Il a laissé son nom à la géométrie euclidienne qui utilise son cinquième postulat, à la géométrie non-euclidienne qui ne l'utilise pas, et aux espaces euclidiens.

Cette base postulée est néanmoins imparfaite, pour démontrer rigoureusement les théorèmes associés à cette géométrie, il est nécessaire d'admettre comme vrai des hypothèses supplémentaires implicites. David Hilbert construisit une axiomatique correspondante à l'idée que se faisait Euclide de la géométrie en ajoutant les hypothèses ad hoc.

Les axiomes de Hilbert sont eux regroupés en cinq catégories: l'association, l'ordre, la congruence, la continuité et les parallèles.

Trois concepts sont associés à cette axiomatique :

1. Celui de l'association définit le mot "contient", il correspond aux notions "est élément de" et "est inclu dans" de la théorie des ensembles.

2. Celui de "l'ordre" correspond à "une relation binaire" entre un couple de points et un point, il apparaît dans les expressions "entre" et permet de définir les segments.

3. La congruence, qui correspond à trois "relations d'équivalence" pour les couples de points, les triangles et les angles.

Remarque: Les points, droites et plans sont considérés comme distincts par défaut.

Voici donc les "axiomes de Hilbert" :

AXIOMES D'ASSOCATIONS (A)

A.A1. Soit deux points, il existe une droite passant par ces deux points.

A.A2. Soit deux points, il n'existe qu'une unique droite passant par ces deux points (in extenso la droite décrite en A.A1) est unique.

A.A3. Une droite contient au moins deux points, et pour une droite donnée, il existe au moins un point non contenu dans la droite.

A.A4. Soit trois points non contenus dans une droite, il existe un plan contenant ces trois points. Tout plan contient au moins un point.

A.A5. Soit trois points non contenus dans une droite, il n'existe qu'un unique plan contenant ces trois points.

A.A6. Soit deux points contenus dans une droite D et dans un plan A, alors a contient tous les points de d.

A.A7: Si deux plans A et B contiennent tout deux un point C, alors l'intersection de A et B contient au moins un autre point.

A.A8: Il existe au moins quatre points non coplanaires.

AXIOMES D'ORDRE (O)

A.O1. Si un point B est entre les points A et C, B est aussi entre les points C et A, et il existe une droite contenant les trois points A,B,C.

A.O2. Soit deux points A et C, il existe un point B élément de la droite AC tel que C se situe entre A et B.

A.O3.: Soit trois points contenus dans une droite, alors un et un seul se situe entre les deux autres.

A.O4. ("Axiome de Pasch") Soit trois points A, B, C non colinéaires, et soit une droite D contenue dans le plan ABC mais ne contenant aucun des points A, B, C: Si D contient un point du segment AB, alors D contient aussi soit un point du segment AC soit un point du segment BC.

AXIOMES DE CONGRUENCE (G)

Remarque: Intuitivement "congruent" signifie en géométrie "superposable".

A.G1. Soit deux points A, B et un point A' élément d'une droite d, il existe deux et deux uniques points C et D, tel que A' se situe entre C et D, et AB est congru A'C et AB est congru à A'D.

A.G2. La relation de congruence est transitive, c'est à dire, si AB est congru à CD et si CD est congru à EF, alors AB est congru à EF.

A.G3. Soit une droite d contenant les segments adjacents [AB] et [BC], et soit une droite d' contenant les segments adjacents [A'B'] and [B'C'] . Si [AB] est congru à [A'B'] et [BC] est congru à [B'C'] alors [AC] est congru à [A'C'].

A.G4. Soit un angle ABC et une demi-droite B'C' , il existe deux et seulement deux demi-droites, B'D et B'E, tel que l'angle DB'C' est congru à l'angle ABC et l'angle EB'C' est congru à l'angle ABC.

Corollaire: Tout angle est congru à lui-même.

A.G5. Soit deux triangles ABC et A'B'C' tel que AB est congru à A'B', AC est congru à A'C' , et l'angle BAC est congru à l'angle B'A'C' , alors le triangle ABC est congru au triangle A'B'C' .

Remarque: Ces axiomes permettent de comparer les segments, et aussi les angles de définir le milieu d'un segment, les droites orthogonales, de parler de triangles équilatéraux, isocèles, etc... Ils permettent également de définir rigoureusement les déplacements dont Euclide faisait si souvent usage sans les avoir définis.

AXIOMES DE CONTINUITÉ (C)

DA1. ("Axiome d'Archimède") Soient [AB] et [CD] deux segments quelconques. Alors il existe toujours une suite finie de points equation appartenant à la droite contenant le segment [AB] et tels que equation qui peuvent satisfaireequation.

DA2. ("Axiome de Cantor") Si equation et equation sont deux suites infinies de points telles que equation et telles que equation, alors il existe un point X appartenant à tous les segments equation . En d'autres termes : soit une suite de segments emboîtés dont la longueur tend vers 0 alors il y a un point commun à tous les segments.

remarque Remarque: Ces axiomes permettent d'établir une correspondance entre les points d'une droite et l'ensemble des nombres réels.
fin remarque

AXIOMES DES PARALLÈLES (P)

A.P1. Soit d une droite et P un point n'appartenant pas à d. Il passe une et une seule droite d' par P qui soit parallèle à d.

Autre formulation équivalente :

A.P1. Soit une droite d, un point P non inclu dans d, alors il existe un plan contenant d et A. Ce plan contient une et une unique droite contenant P et ne contenant aucun point de d.

Nous ne pouvons pas réellement démontrer la non-contradiction logique de l'ensemble de ces axiomes. Cependant nous savons deux choses si nous faisons un parallèle avec ce que nous avons étudié dans la section d'Arithmétique et d'Algèbre du site (en particulier les chapitres sur la Théorie Des Ensembles, l'Analyse Fonctionnelle, les Suites Et Séries) :

1. Si ces axiomes sont contradictoires, alors la théorie des nombres réels est contradictoire.

2. Si le système d'axiomes obtenu en supprimant l'axiome de Cantor est contradictoire, alors la théorie des nombres rationnels est contradictoire.

Ainsi, la confiance qu'on a dans la solidité de ces axiomes repose sur celle qu'on a dans la théorie des nombres réels, qui est très grande.


page suivante : 4. Barycentre